TE-18

STUDY OF AIRCRAFT POSITION FIXING USING
THE NAVY NAVIGATIONAL SATELLITE SYSTEM

by

Benny R, Spicer
B.S., Mathematics, University of Kentucky (1962)
B.S., Electrical Engineering, University of Kentucky (1963)

Submitted in partial fulfillment
of the requirements for the degree

of Master of Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May, 1967

Signature of Author

Department of Aeronautics and
Astronautics, May, 1967

Certified by Ll F7. MDA.,

Thesis Supervis

Techmcaljsﬂujipsor
Accepted by

Chairman, Departmental
Graduate Committee




PRECEDIRQ PAEE BLANK NOT FILMED.

TE-18

STUDY OF AIRCRAFT POSITION FIXING USING
THE NAVY NAVIGATIONAL SATELLITE SYSTEM

by
Benny R. Spicer

Submitted to the Department of Aeronautics and Astronautics on May 19, 1967
in partial fulfillment of the requirements for the degree of Master of Science,

ABSTRACT

The possibility of using the Navy Navigational Satellite System for position
fixing of supersonic aircraft (speeds up to Mach 2. 7) is examined. The effects of
errors in required input data on the computed position of the aircraft are determined
for various pass angles of the satellite with respect to the aircraft. Results indicate
this system could be a valuable aid to supersonic aircraft navigation.
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FOREWORD

As air traffic along the major air routes of the world increases, separation
standards for commercial aircraft will be reduced further and further. This re-
duction will require greatly increased accuracy in aircraft navigation equipment.
If the aircraft concerned are supersonic, with speeds up to about Mach 2.7, the
navigation problem becomes more acute. This thesis is concerned with the study
of the Navy Navigational Satellite System as a possible aid in the solution of this
problem. This system, heretofore, has been used primarily for fixed or slow-
moving earth-bound vehicles and has yielded excellent results with these type
craft. If used with high-speed aircraft, additional and more accurate data are
required. This study determines the effects of errors in this data on the accuracy
of the computed position of a supersonic aircraft for several flight paths.
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CHAPTER I

INTRODUCTION

With the advent of commercial aircraft capable of flying at supersonic
speeds, the problem of accurate navigation becomes increasingly difficult,
particularly in the heavily-traveled regions over the North Atlantic. In an effort
to meet this increasing demand for airspace in the North Atlantic region,
separation standards (Reference 7) have recently been reduced to 90 n. miles
lateral (cross-track) separation, 1,000 ft, vertical separation and 15 minutes
longitudinal (along track) separation. To meet these demands for increased
navigation accuracy, particularly for supersonic aircraft, many types of
navigation systems and combinations of navigation systems are being examined
in order to determine the system or systems most suitable for use with
commercial supersonic aircraft. Factors that must be considered in the
evaluation of these systems, in addition to accuracy, are cost, present
availability, reliability, coverage area, etc. One particular navigation system
being examined for these purposes is the Navy Navigational Satellite System.
This system has been used successfully for several years to enable fixed or
slow-moving earth-bound stations to determine their position accurately. Recent
tests have shown that this system could also be used by aircraft to determine
position if the aircraft velocity and altitude are known to a high degree of

accuracy.

The purpose of this thesis is to determine the accuracy with which a
supersonic aircraft can determine it's position using the Navy Navigational
Satellite System with given errors in the required input data which define the
motion of the satellite and the aircraft. These input data consist of the orbital
elements defining the satellite's position and motion and the aircraft speed,
heading, and altitude.

The operation of the system is simulated by a digital computer program.
The general approach is to define a particular satellite orbit and a particular
flight path for a supersonic aircraft. The measurements the aircraft would
make in the actual flight (assuming no imperfections) are determined first.

Then, the position of the aircraft is computed, based on input data which is
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correct, except for one parameter that is perturbed by a given error. In this
way, the sensitivity of the accuracy of the position determination to the various
errors is determined. This procedure is carried out for three separate aircraft
flight paths--one for which the satellite is just above the aircraft's horizon

(low satellite pass angle), a second for intermediate pass angle, and a third for

which the satellite passes almost directly over the aircraft (pass angle near 90°).

Because the actual satellite orbits are essentially circular, polar orbits,
the digital computer simulation considers the satellite orbit to be a perfect
circular, polar one, The satellite position and motion are determined from the
six orbital elements used in the simulation; these are right ascension of the
ascending node, argument of perigee, inclination of the orbital pléane, eccentricity,
semi-major axis, and time of perigee passage (See Figure 1), The effects of
inaccuracies in the knowledge of these elements are considered by adding, one
at a time, a given error to a particular orbital parameter and then, the aircraft
position is computed using correct input data except for the perturbed value of
that particular orbital element, The error in computed position resulting from
this particular error gives an indication as to how accurately this parameter
should be known. ¥or a perfect circular, polar orbit, the inclination is 900, the
eccentricity is zero, the argument of perigee is arbitrary, and the semi-major
axis equals the radius of the orbit. For this simulation, only one satellite is
considered and it's orbital plane is somewhat arbitrarily chosen to coincide with
the Greenwich meridian plane near the time it is to be in sight of the (hypothetical)

aircraft,

The aircraft in the simulation is constrained to fly at a constant speed of
1,800 statute miles per hour, constant heading, and constant 70, 000 feet
altitude, It is felt that this is not an unreasonable restriction because, once the
aircraft has reached its planned altitude, its velocity and altitude are likely to
remain essentially constant during as short a period as the satellite will be in
view of the aircrait, The three separate flight paths considered take into account
the heading the actual aircraft would have at the three corresponding stages of
it's flight across the North Atlantic from New York to London, It is noted again
that only one satellite orbit is considered in the simulation and the (hypothetical)
aircraft's position,p, is moved to correspond to the starting position of each of
the three flight paths. The input data required to define the aircraft's motion are
speed, heading, and altitude; these are expressed in the simulation as the east
component of velocity, north component of velocity, and altitude. The procedure
for determining the effects of errors in these quantities on the computed position
of the aircraft is exactly the same as that followed for errors in the knowledge of
the orbital elements. The values chosen for the errors in vehicle motion are
intended to be in line with the accuracy to which this input data is likely to be known

in an operational situation,
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CHAPTER I1

OPERATION OF THE NAVY NAVIGATIONAL
SATELLITE SYSTEM

In this chapter, the operation of the Navy Navigational Satellite System will
be discussed.

The Navy Navigational Satellite System uses the phenomenon known as the
Doppler effect to enable a receiving station to determine its position based on its
measurements of a radio frequency signal transmitted by an orbiting artificial
satellite.

The Doppler effect results from the relative motion of the transmitter of a
signal with respect to the receiver (or vice versa) which detects the signal and it is
manifested by a shift in the frequency received even though the transmitter frequen-

cy may remain fixed. The equation describing the Doppler effect can be written

fR = ft (1+1/c)

where fR is the frequency of the signal detected by the receiver, ft is the trans-
mitter frequency (constant for this system), f is the velocity of the transmitter
with respect to the receiver (or vice versa), and c is the speed of light. This

equation does not consider the constant phase lag due to propagation time; this is
27rftd
equal to — 0

, where do is the distance between the satellite and aircraft at

t= to. If there is no relative motion of the transmitter with respect to the re-
ceiver, then the Doppler effect (shift) is not in evidence.

The Navy Navigational Satellite System is set up so that each of the satel-
lites (there are four in evenly spacedorbital planes) transmits a stable radio fre-
quency signal of frequency ft = 400 mc. which has superimposed on it tix_ning mark-
ers that are transmitted at precise two minute intervals. The receiving station
(aboard the aircraft) receives the Doppler-shifted signal fR from the particular
satellite in view and mixes this signal with a reference oscillator signal of frequency
fG to obtain a beat frequency fG - fR’ where fG is chosen to be greater than any
expected value of fR’ The actual measurements used by the receiving station in
determining its position are the number of cycles of the fG - fR signal received
between the times of reception of consecutive time markers. The number of
cycles counted between the times of reception of the tn and L 1 timing markers
can be expressed as



telt 0t

Nn,n+1 = S‘t st (fG-fR) dt
nt°'n

where 6tn represents the time required for the signal containing the tn timing
marker to travel from the satellite to the aircraft; a similar definition holds for

&t Expansion of this equation yields

n+l’

t t

n+dl 6tn+1 nsl t 6tn+1

N = f.dt - f, dt
n,n+1 G R
tn + 6tn tn + 6tn

thel * Oty

- 6tn) - f_ dt

£ (t
G . R
tn +6tn

n+1” tn) + fG (6tn+1

Because the number of cycles received by the receiver between the times of

reception of the 1:n and t timing markers is equal to the number of cycles

n+1

transmitted between the ty and t timing markers, the integral

+1
tn+1 +6tn+ 1 tn+ 1
f,dt = g f, dt = constant
t_+6t R t t
n n n
Therefore,
Nn, n+l © (fG - f'c)(tn+1 - tn) + fG (étn+1 b 6tn)

where fG and ft are constants and (tn - tn) is equal to 2 minutes. The final

+1
expression takes the form

1 - - - -
Nn,n+1 = g - ft)(tn+1 St g {Eﬂrn+1 h pn+1! - lrn - pn'] }

where Fn is the position vector of the satellite with respect to the center of the
earth at the time of transmission of the t, timing marker and Py is the position
vector of the receiving station (aircraft) with respect to the center of the earth
at the time of reception of the tn timing marker. An equation of this form may
be written for each two-minute interval over which Doppler measurements
{counts of cycles) are taken.
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Figure 2. Operation of Navy Navigational Satellite System.

Writing !rn—- pnl as d (Pn, pn)’ where Pn is the (satellite) position corres-

ponding to T , Py is the (aircraft) position corresponding to P, andd (Pn, pn) is

the distance between Pn and P, it is noted, for each two-minute interval, that

Nn, n+1ls the measured quantity and fG’ ft’ and c are constants; this leaves as

unknowns the quantities d (Pn, pn) and d (Pn +17 Pnst 1).

f

G -
N (fg -1 -t )+T [d(PrH_l, P, )-d(P, pn)]

=
n, n+1

The satellite positions Prl and P
of the tn and t

n+ 1 corresponding to the times ot transmission

n+1 timing markers, ‘:an be determined by the received station from
data transmitted by the satellite in a manner which is described later. This, then,

leaves only the aircraft positions P, and p as unknowns. If the altitude of the

aircraft is known, P, and Ph+1 each reprre:s+er11t two unknowns, which may be ex-
pressed as latitude and longitude with respect to the equator and the Greenwich
meridian, respectively, However, if the motion of the aircraft (speed and heading)
is accurately known during the two minute interval, it is possible to express Ph +1
in terms of pn, leaving only two unknowns in the equation, i.e. the aircraft latitude

and longitude corresponding to Py the position at the time it receives the th timing



marker,

Even though both fG' and ft are very stable during as short a time as the
satellite is in view of the receiving station, it is difficult to determine the essen-
tially constant difference fG - ft to the accuracy desired. This adds a third unknown
to the above equation. By taking Doppler measurements over three intervals, how-
ever, (n =1, 2, 3) and expressing the aircraft positions Pgs Pgs and Py in terms of
P and aircraft motion after tl, the three resulting equations in three unknowns can
be used to eliminate the term (fG - ft) from these equations. This procedure yields
the following two basic equations by which the aircraft position Py (hence Py, P3» and
p4) may be determined:

- l:d (P, Pl):] * Z[d (Py, pz)] - [d (Pg, Ps):] - QE (Ny,5 - Ny, 3)

- [d (P,, p2)]+ 2 [d (P,, p3):| - [d (P,, p4):| = ‘}—G- (Nyg-Nj o)

where the subscripts relate to the relevant time markers tl' t2. t3, and t4 (t2 =

t1 + 2 minutes, etc.). The aircraft latitude and longitude corresponding to positions
Py» Pgs and p4 are easily determined since the motion of the aircraft for the

time after P is known.

In order that the receiving station can determine the satellites' positions, the
satellites' transmitted signals are phase-modulated with the information necessary
to perform these computations. This information consists of a set of orbital ele-
ments, plus corrections, which serve to define a specific orbit corresponding to
each timing marker. This is necessary because the actual orbit of the satellite is
not perfectly circular or elliptical due to the ellipticity of the earth and to the non-
uniformity of the earth's gravitational field (gravity anomalies).

The remaining input data required are aircraft speed, heading, and altitude,
which describe the motion of the aircraft and enable the positions Py Pg3. and Py to
be expressed in terms of the position Py

The equipment necessary for the receiving station requires a base area of
approximately 4 by 6 feet and the maximum component height is about 3 feet. The
cost of the compléte receiving station is about $60, 000, However, if there is already
a digital computer aboard that could be used for the computations required, the cost
(exclugive of the computer) would be only about $5, 000, The antenna required at the
receiving station can be fairly small due to the short wavelength (0. 75 m) of the
transmitted signals. Even though this antenna is small, it may, however, present
a troublesome drag problem for supersonic aircraft. Study and experimentation



could determine more fully the magnitude of this problem.
This summarizes the principles, computations, and equipment which the

Navy Navigational Satellite System employs in its operation.
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CHAPTER III

DIGITAL COMPUTER SIMULATION

In this chapter, the details of the digital computer simulation will be
discussed.

The digital computer program can be logically divided into four major parts.
Part 1 is concerned with the computation of the Nl, 9 N2, 3 and N3’ 4 that the
aircraft would actually measure if it were flying the defined flight path, given the
defined satellite orbit. These computed quantities are not changed in any
subsequent part of the program. Part 2 computes the satellite positions Pl’ P2,
P3, and P4 based on input parameters of which one may be perturbed from its
correct value for a particular run. Part 3 determines the aircraft positions Py
Py p3, and p4 based on an estimated value of Py and on the given input data, which
may contain one parameter that has been perturbed from its correct value for a
.ﬁarticular run. Part 4 then computes the aircraft position based on the values of
Nn, n+1’ Pn’ and P, computed in Parts 1, 2, and 3. As stated before, only
one input parameter is perturbed from it's correct value for each performance of
the program, so the error in the computed position of the aircraft is dependent

on only one input error.

11



A. COMPUTATION OF DOPPLER MEASUREMENTS

The operations carried out in Part 1 will now be discussed. Before the

computation of N (n = 1, 2, 3), the data defining the exact positions and mo-

tions of the aircrr;ftna+n1ci satellite are read into the computer., These data include
the time corresponding to satellite position P1 (tO = tl)’ the time at which the satel-
lite passes through perigee, the remaining orbital elements, the aircraft geocentric
latitude and longitude at time tl, aircraft east and north velocity components, air-
craft altitude, and the time, ta’ at which the geocentric inertial frame (i - frame)
coincides with the geocentric earth frame (e - frame). Next, values of needed con-
stants are set into the computer. As given previously, the value of N

n, n+l 1S

f
G
(fG - ft) (tn+1 - tn) T [d (Pn+1, pn+1) -d (Pn, Pn )]

wheren = 1, 2, 3 for a six minute interval.

In the simulation fG’ ft' C, and (tn+1 - tn) are known. Therefore, the
values of d (Pn, pn) forn = 1, 2, 3, 4 must be computed based on the defined posi-
tions and motion of the aircraft and satellite. Before this is done, the coordinates
of the position of each craft are referred to the i-frame. This frame is chosen
because the orbital elements defining the satellite motion are given with respect to
this frame, and if the vehicle position is given in spherical coordinates with respect
to the e-frame, it is a very simple matter to compute its coordinates in the i-frame,

also.

Because the satellite orbit (in the simulation) is a circular, polar orbit, the
computation of the satellite position coordinates in the i-frame is very straight-
forward. The longitude angle (On) coordinate is a constant for each P, and is equal
to the right ascension of the ascending node; the length of the radius vector, L
is also a constant and is equal to the radius of the orbital path. The angle cor-
responding to latitude varies as the satellite moves along its path. It is assumed
in the simulation that the satellite is traveling from south to north when it is in

view of the aircraft. The angular velocity of the satellite is given by the equation

c"'me rad

3 c
a se

Na = Mean angular motion =

where G is the gravitational constant, m, is the mass of the earth (mass of the
satellite is ignored), and a is the semimajor axis of the orbit. For a circular orbit,
a is equal to r, In order to place the satellite at a particular point in its orbit at a
given time, the time it passes through perigee (t ) is specified as one of the orbital
elements. Because this is a circular orbit, the argument of perigee is arbitrary

12



and was set equal to zero degrees in the simulation. Therefore, the latitude angle
of the satellite can be expressed as en = Na (‘crl -t ) rad. The position coordinates
of the satellite are, therefore, o 9n, and ¢n referred to the geocentric inertial

frame.

The computation of the positions P, of the aircraft presents more difficulty
because, though the aircraft altitude is maintained constant, the radius of the earth
changes with latitude and this must be taken into account. Both latitude and longi-
tude rate are affected by this variation even though aircraft speed, heading, and
altitude remain fixed. The expression for the radius of the accepted analytic figure
of the earth (Hayford ellipsoid) may be written as
re2 cos2 B . re2 sin2 B _ 4

2 2 -

a, b

where B is the geocentric latitude, r, is the radius of the earth at 8, a, is the radius
of the earth at the equator, andb is the radius of the earth at the poles. This equa-
tion may be rearranged to yield

re2 = b (1 - kcos2 B) -1/2

2 .2
a_ -b
where k is defined to be e_z_- The square root term may be expanded into a
a, .
- +
power series of the form (1 - x)™ " = 14n + n_(n?l) X o4l

By eliminating all terms of the power series which yield magnitudes less than 1 ft.
the expression for r, may be written as

2
r, = b[1+§-(1+ cosZB)+§3k7(1+c052[3)2]

In the simulation, b and r,are expressed in kilometers. In order to compute posi-

tions Py» Py Pgs and Py of the aircraft given its position at t,, the values of latitude

1)

rate and longitude rate are computed and integrated piecewise starting at t. to yield,

eventually, Pys Pys P3s and Py- It is noted that the position of the aircraft 1axt tl’ the
time of transmission of the t1 timing marker is the position read into the computer.
First, the positions of the aircraft corresponding to tz, t3, and t4 are determined;
then, these positions are adjusted to account for the very short time required for

the radio frequency signal to travel from the satellite to the aircraft, 6t1, 6t2, etc.

13



These adjusted positions are the ones corresponding to Pys Pgs Pg and Py-

In order to compute the geocentric latitude rate (also the longitude rate), it
is necessary to know the distance from the center of the earth to the aircraft, r,.
It has been shown that this distance can be expressed, with an error less than 1 ft,
as the sum of the altitude of the aircraft (measured perpendicularly from the surface
of the earth), hA, and the radius of the earth at the point directly below the aircraft,
Lo Because the earth is, essentially, an ellipsoid and not a sphere, these two dis-
placement vectors are not coincident (Fig. 3). In the simulation, the latitude on which
computations are based is the geocentric latitude of the aircraft, not the geocentric
latitude of the point directly below the aircraft on the surface of the earth. Calcu-
lations show that, if the latitude of the aircraft is used to compute the theoretical
radius of the earth at the point beneath the aircraft, a maximum error of less than

1 ft, is experienced; therefore, this approximation is a very good one.

The geocentric latitude rate of the aircraft can be expressed as

a8 Vn(cos 60)

F - __r_j__h__where Vn is the north velocity component of the aircraft velocity,
e A

r, is the radius of the earth, hA is the altitude of the aircraft, and 60 is the angle

shown in Fig. 3. In the simulation, the cos 60 term was considered to be 1.0.

This term differs from 1.0 by, at most, 5.7 x 10_6 and therefore causes an error

- ) ]

Figure 3. Geometry of Aircraft Latitude Motion

14



in north velocity less than 0. 01 mph. Even though both VN and h, are considered

to be constant during the flight, latitude rate changes because the radius of the earth
varies with latitude. In order to determine the change in latitude between ty and to,
t2 and t3, and t3 and t4, this equation is integrated piecewise for small intervals of
time, i.e., the value of ry is considered to be a constant for a small At. The change
in latitude is, thus, determined for the time fromt tot + At, then a new value of r

is computed and this procedure is continued until the aircraft latitude is determined

for times t2, t3, and t4.

Along with each computation for latitude change, the change in longitude is

determined in a similar manner. The expression for longitude rate is

d?Le VE

dt < (re+ hA) cos B

where VE is the (constant) east component of aircraft velocity. Because 8, thus T
also, is changing if VN # 0, the change in longitude must be determined by integrating
this equation in a piecewise fashion, as for latitude. For each increment At, the
change in longitude is computed first, then the change in latitude is determined.
These changes are added to the previous values, and this procedure is repeated until
the aircraft latitude and longitude are determined for times tys t3, and ty In this
simulation At was set to 1 second because VN’ thus g—f, is great in magnitude for

two of the three flight paths considered.

Because the aircraft positions Pys Py Pgs and Py correspond to the times at
which the aircraft receives the timing markers (t 1t 6t1, t2 + 6t2, etc,) and the
positions just computed correspond to the time of transmission of the timing markers
(tl, t2, etc.), these positions must be adjusted by computing the time required for
the radio signal to travel from the satellite to the aircraft. This requires that the
distance between the satellite (at tn) and the aircraft (at tn + 6tn) be known. Because,
at the present stage, only the aircraft and satellite positions at tn are known, these
positions are used to calculate this distance. The maximum 8t will occur for the
low satellite pass angle case (pass angle ~ sin_1 56(?—0'00 = 13°) and will be on the order
of 16 milliseconds. Because the aircraft is traveling at 1, 800 mph, the aircraft will
travel, at most, about 42 ft. in the time &t ; therefore, the above computed 6t may
be in error equal to the time it takes a radio wave to travel 42 ft. (for the worst case).

This approximation leads to an error in the computed position p, on the order of

\'
N 42

(3, 600) (S,ZSO)X %280 =0.11 x 10°
186, 000 )

3

ft

15



which is completely negligible. Therefore, the values of 6tn may be computed very
accurately by using the positions of the aircraft and satellite at the times tn for the
computations. The change in latitude and longitude between times t andt + 6t

are computed in the same manner as mentioned above.

In this simulation, all distances are computed using the latitude, longitude,
and radius vector length of each position with respect to the i~frame. The distance

d (Pn, pn) may be expressed as

1/2
2 2
d (Pn’ P, >= [rn +e,"-2rp cos 'yn:l

where r is the length of the Fn vector, N is the length of the En vector, and Yy is
the planar angle between these two vectors. This equation follows directly from the

cosine law of plane trigonometry. The term cos v, may be written as
Z w . + _
cos v, = sin d)n sin Bn cos ¢n cos Bn cos <9n K1n>

where ¢n is the angle between the equatorial plane and the vector Fn (a latitude angle),
Bn is the geocentric latitude of the aircraft, Gn is the angle from the i-frame X-axis

to the meridian plane containing the satellite radius vector ﬁn, and ?\1 is the cor-
n

responding (longitude) angle of the aircraft measured from the XI axis. This expres-

sion is derived from the cosine law of spherical trigonometry. The angle 7\1 of the
n
aircraft is equal to its longitude with respect to the earth, le , plus the angle
n

w.. (t- ta) where w, _ is the constant angular velocity of the earth with respect to

ie ie

the i-frame,

At this point, the actual number of cycles counted by the aircraft equipment
in each interval between consecutive timing markers can be calculated. The number
of cycles counted between times of reception of the tn and tn+1 timing markers, as

given above, is expressed as

f
Nn, n+1 (fG - ft) (tn+1 B tn) * 'EZG [d(Pn+1’ Pn+ 1)- d(Pn’ pn)}

The value chosen for fG in the simulation was fG = 400,01 me. with ft = 400.0 mc.
It was desired to make f; as close to ft in frequency as possible in order to reduce
the number of counts; this was done to reduce computational error (not wanting to

lose significant digits). The value of (t - tn) for all n is two minutes (the error

n+l
n+l - tn is held to less than 10 microseconds in the actual system).
Since P and p (for n = 1, 2, 3, 4) have been determined, the computation of num-
n. n+1° takes place. Note that, up to this point, all input

data is, essentially, error-free. From this point on, one of the input parameters

in time between t

ber of cycles counted, N

used may be in error, as explained previously.
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B, GENERAL COMPUTATION OF SATELLITE POSITIONS

Part 2 of the simulation will be discussed here. This section computes the
satellite positions Pl' PZ’ P3, and P4 in a manner that will allow the input data
(the orbital elements) to contain errors. The previous (error-free) computations
of satellite positions allowed the use of greatly simplified equations because the
(hypothetical) orbit is circular and polar., Now, with possible error terms added
to the correct values of orbital elements, the orbit defined by this (perturbed)
data may not be a polar, circular orbit, Therefore, general equations must be
used to determine the satellite positions, First, the error terms are read into the
computer and added to the correct values of orbital elements, Next, it is necessary
to compute the value of mean angular motion,

N = Gm, pad
Cc a3 sec

M=N (t-t_ ) rad
c p

Then, the mean anomaly

is computed for the time corresponding to the transmission of the time marker t .
Because the mean anomaly normally does not equal the actual angle that the radizs
vector to the satellite makes with the line of apsides (through perigee), it is
necessary to compute this angle f, called the true anomaly, using the value of mean
anomaly. For small values of eccentricity, Reference 1 shows that the relationship
between f and M may be expressed as

3 2 3
£=M +(‘°‘e - Z—) sin M »<3i> sin 2M 1—33—> sin 3M

where e is the eccentricity and is near or equal to zero. L.et a right-handed
rectangular coordinate system with origin at the center of the earth be designated

with axes Xop‘ Yop’ Zop such that Xop passes through perigee, Yop is also in the

orbital plane and 90° from Xop’ and Zop is perpendicular to the orbital plane. The
position of the .satellite in this frame can be expressed as

Xop= r0 cos f
Yop= r, sin f
Z°p= 0

The value of r_ is determined by the equation

_a(l-ez)
To "T+ecost

where a is the semi-major axis of the orbit (See Figure 4).
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SATELLITE

\J\omr AL PLANE

Figure 4. Geometry of Satellite Motion

Because the X op’ Yop’ Z0 frame (OP-frame) may not be oriented in a
simple fashion with respect to the i-frame, it is necessary to perform a coordinate

transformation between the OP-frame and i-frame by means of the rotation matrix

Lo, 1
R= 1| m m, mg
n; n, N3
where X X
1 op
YI‘B Yop
Z z
op

Because the satellite is always in the X0 Yop plane, the Zop coordinate is zero

pl
and there is no need to compute 13, mg, and ng. The expressions for the remaining
terms in the matrix are:

11= cosQcosw - sin N sin w cos i

12= -cosfdsinw -~ sinfl cosw cos i
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ORBITAL PLANE

EQUATORIAL PLANE
PERIGEE

Figure 5, Orbital Elements Q, w, i
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m, =sinfQcosw + cossinwcosi
m, = -sinQsinw + cosQ cosw cos i
n, = gin w sin i
n, = cos wsini

where  is the right ascension of the ascending node, w is the argument of perigee,
and i is the angle of inclination (See Figure 5). This coordinate transformation
yields the rectangular coordinates of the satellite position with respect to the
i-frame. Because the range difference computations use coordinates of longitude,
radius vector length, and latitude, it is now necessary to convert from XI’ YI’ Z
coordinates to latitude, longitude, and radius vector length, From Figure 6, it
is seen that the following relationships hold:

I

X1

"N\ EQUATORIAL PLANE

Figure 6. Relationship of Coordinates

The value of r is the same as T computed previously.

This summarizes the procedure carried out to determine the positions Pl’
P2, P3, and P4 of the satellite for all cases including those for which the orbital
elements define an orbit other than a perfect circular, polar orbit; this will be the

case for errors in either i or e.
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C. GENERAL COMPUTATION OF AIRCRAFT POSITIONS

The computation of aircraft positions Py p3, and p4 based, initially, on an
estimated position for Py» is the concern of Part 3 of the simulation. The perturba-
tions in the input data defining the aircraft motion are read into the computer at the
start of this procedure and are added to the known correct values before computa-
tion of Py» Pg: P3, and Py is begun. Since the actual value of Py is not known
to the navigator, an estimated value must be used to start. In this simulation, as
a mere convenience, the estimated position read into the computer was made to cor-
respond to the estimated aircraft position at tl-not t1+ 6t1
Starting with this initial position, the changes in latitude and longitude are determin-
ed between t1 and t2, t2 andt_,, and t3 and t4 in exactly the same manner as was

3
done in Part 1. Since these positions do not correspond exactly to Pys Pg» etc.,

which corresponds to Py

they must be adjusted in the same manner as in Part 1; this time, however, initially,
the estimated positions at tl’ t2, t3, and t4 are used to compute the étn's. Because
the estimated positions are expected to be within 20 or 30 miles of the actual posi-
tions, this causes no great difficulty. Once this set of P;» Pys Ps3s and Py is de-

termined, the latitude and longitude of Py» Bl and Re , respectively, are consider-
1

ed as the two unknowns in the two basic equations given in Chapter II and the posi-

tions Py Pgs and p, are now expressed in terms of Bl and )‘e . This is done by
1

. . - A = A’ A' . .
considering p  to be expressed as Bn Bl + ABn and e e +A e This will
be discussed more fully in the discussion of Part 4 of the simulation. Because
the accuracy of the computation of ABn and Ake depends on the accuracy of the

n

initial estimate, there will be some error in the determination of the ABn's and

Ake 's due only to this error. Since the error in the estimated position will be less
thann30 miles, the resulting errors in ABn and A?\en are small. To eliminate this
source of error completely, however, after each correction to Bl and Xel is
computed, the values of ABn and Alen are computed again, this time being based

on the improved values of Bl and kel.
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D. SOLUTION OF THE NAVIGATION EQUATIONS

In Part 4, the procedure by which the two basic navigation equations are

solved for Bl and )\e is discussed in detail. As has been mentioned, the solution
1
of these two equations starts with an estimated value for Bl and Ae . The procedure
1

followed is one of iteration - starting with the estimated values of ,81 and )\e , a set
1

of corrections are computed for Bl and Ae which, when added to the estimated
1
values, yield new values which are closer to the solution. This procedure continues

until the corrections come sufficiently close to zero, at which time the values of

Bl and )\e are considered to be the solution of the equations. The particular method
1
used is Newton's Method for two equations in two unknowns. A brief description of

this method will now be given. Let two equations be given,

f(x, y)=0
gx, y)=0,

from which the unknowns x and y are to be determined. Starting with an estimate

for x and y, the corrections Ax and Ay to the estimated values are:

of 0 9 of
g5y Ioe f%- &5
Ax = , Ay =
af o9g _of ag of ag _of og
9x 9y 9Jy 9x dx 9y 9y ox

where the quantities in the equations are evaluated, initially, by using the estimated
values of x and y. Substitution into these equations yields values of Ax and Ay which
are added to the estimated values. This results in an improved pair of values for

the roots. Now, a new set of corrections Ax and Ay are computed using the improved
values of x and y to evaluate the above expressions. This process continues until
the corrections become negligable, at which time the values obtained for x and y are
the solutions to the equations. Following this procedure, the two basic navigation

equations can be written as

(8, >tel)= -[4(P;- py)] *+2[d(Py. )] - [4(Py ps)]+%(N2,3'N1,z)
g('ex')‘el)' ‘[d(Pz‘ pz)] * Z[d(Ps’ p3>:] 'E’(P4’ p4>] +I‘%}(N3,4'N2, 3)

The computation of the corrections ABI and A)\e require the evaluation of the follow-

. X 1
ing expressions:
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i olalP ’plﬂ ard (P, p,) falPs pa)}

%%‘f R 3B, 9B
og __aEi(PZ’ p2] .32 al:d Pa, p3] _a[d(P4’ p4):|
3By 3B, 9B, 3B,
a[d . )] ‘s oa(p,, pzSJ__ o[a(Py. )]

o ) DY

el el el el
o . _a[d(PZ’ pz)]+ 2a[d(P3’ ps)]_ a[d(}"4, p4)]
oA o, %, g

1 1 1 1

It is noted that, in order to evaluate these partial derivatives, it is necessary to
6[d (Pn’ pnﬂ and a[d (Pn’ pn)]
9B axe
1 1
simplest to develop the general equation with subscript n and the value of n concerned

develop expressions for forn=1, 2, 3, 4. Itis

can be sustituted into the general equation to obtain the expression needed. First,

the expression for d(Pn, pn) is written as

2 2 _ . . { _
d(Pn’ pn) = [rn t e, 2rnpn (smd;n s1r/1 Bn + cos(bn cos Bn co On
’ 1/2

xen- “ie (ATn)] ):I

where ws (AT) represents the angle between the e-frame and i-frame and the other
terms are as defined previously. Taking the required partial derivatives of this

expression yields

a[d P )] 1 5 o _ '
[d(Pn’ pn)] 5 B - rn{sm Gnsm Bn +
cos en cos Bn cos[en- Xen - w0 (ATnﬂ}] +
%84\ (.. .
331 smd>n coan - cosd>h sin Bncos l:en-len-wie (ATn)] +

A
e

+ EB_I—Q (005¢n cos B Sin[,"n"‘e "Yie (ATH)])

8[ (Pn’ pn)]

€1
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_ olalp_, b)) 9o 0B
It is. seen that, in order to evaluate —aBL-, expressions for ;37—
1
ok

and must be developed. Because P is equal tore + hA’ it can be expressed as

K 3K> 2
Py =bl:1 +z<1+ cos ZBn) +—3? (l+ cos28n> +hA
where Bn= Bl + ABn (note that when n =1, ABH =0). Taking the partial derivative

of this expression with respect to Bl yields

g—g—r=——(g—m<31n 2Bn><83 >[1 +— (1 + cos2f ):| )

: 3B ) 0
" This requires the expression fora—rl , Which may be written as-—@-‘) = { 1) +

—n
8[31

%8y
o[a8y) 208
———L =1 + —— . In developing this expression, the approximation
831 aBl
VN (Atn) _ZVN (Atn)
AR~ =
n Ap PLtP
+_n
P17 72
is used where Atn e t, - ty Substituting this expression into the equation for
9p
n _.
=5~ Yyields
56, I

2V Atn)
88
(bk)(e, 2Brb[1+ 1+ cos28n)] —
dp (py*e )
BBn = _k 4 where
1 (bk) sin28 ) (V) (at, |:1 +38 (1 + cos2B ):]
1-
(py * px)
9p
1 __ (bk) /. 3k
331 5 (s1n281) [14- (1 + cos 2[3 )]
ax 2% a(me )
Writing A =X_ + AX_, the expression for L can be written as 1 + n
& e, ey ey 38y 36y 9,
2% ax, a(n .
1 X n n .
h ——— is zero. Therefore, = . hi is d
where 861 331 331 1is expression is developed
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using the approximation

- AVE @t,) - 2V (AtnB) 7
SR T S ]

3 Axe) 2
Therefore, the quantity Y o' = 38 1 can be expressed as
1 1

n

o, o b [fA ] fE] )
9By (er* py) |:cos B; “)]

Because the 6tn's are not all equal, the values for the Atn's are not all exactly
equal. However, because the magnitudes of the étn's are on the order of millisec-
onds and the differences in the 6tn's will be even less, the Atn's were set equal to
the relevant multiples of 2 minutes in the evaluation of the above expressions. It is

pointed out again that only Bl and Xe are the unknowns in the expressions; the ABn'S,
1
AX_'s, At 's, etc. are known, within the limitations mentioned previously. This,

n
then, summarizes the procedures by which the two basic navigation equations are

solved for Bl and )\e
1
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CHAPTER IV

RESULTS OF THE SIMULATION

As stated before, three separate flight paths were simulated by this computer
program, For each flight path, the same satellite and satellite motion were
simulated, i.e. for the start of each particular flight path (starting time was the
same for each path), ts the satellite was at the same point in it's orbit and it's
(error-free) orbital elements were the same. Flight path #1 begins at p = 45°N
and \e = 65°W at time ty = 7200 sec GMT. The total velocity is 1,800 mph, as it
is for all three flight paths, The heading is a constant 55° measuring clockwise
from true north. This value of heading is expressed by setting the north velocity
component, VN = 1,032, 44 mph and the east velocity component, VE = 1,474, 47
mph. As for all three cases, the altitude above the reference ellipsoid is 70, 000 ft.
The second flight path, Flight path #2, starts at B = 50 N and he, = 45°W at time
tl = 7200 sec GMT. The heading in this case is 75° expressed as VN = 465,876 mph
and VE = 1,738,656 mph, Flight path #3 commences at g = 53°N and )\e = 20°W at
time tl = 7,200 sec GMT. In this case the heading is 90 from true north; therefore,
VN = 0, and VE = 1,800,00 mph. In all three cases the time at which the e-frame

and i-frame are coincident is set to 0 sec GMT.

The effect on the computed position of errors in the orbital elements and
errors in the knowledge of the aircraft motion are determined for each of the three
flight paths. As stated previously, only one type of input error is considered at a
time. The reason three separate flight paths are considered instead of just one,
is that it is expected that the magnitude of error in computed positionis a
function of the satellite pass angle, the angle the position vector from the aircraft
to the satellite makes with the horizon. Flight path #1 corresponds to a satellite
pass angle of about 130, flight path #2 corresponds to a 27° pass angle, and the
pass angle is near 90° for flight path #3.

The values of errors used for the orbital elements are as follows:

Atime of perigee = 1,0 sec

A eccentricity = 0,001

A semi-major axis = 1,0 km,

A argument of perigee = 0.1 degree

27



Error Source (magnitude)

Flight Path #1

Flight Path #2

Flight Path #3

No errors
Time of perigee (1.0 sec)
Eccentricity (0.001)
Semi-major axis (1.0 km)
Argument of perigee (0.1 deg)

Rt. Ascension of
Ascending node (0. 1 deg)

Inclination (0. 1 deg)
East Velocity (3. 5 mph)
North Velocity (3.5 mph)
Heading (4 fln)

VS T " S o < B ' B o)

Altitude (1, 000 ft)

OO0.0G

.019 n.m.
.28
.68
.03
.86

.13

.32

67
72

.54
.10

W

M O 3 Ww O

.018 n. m.
.39

73

.95
.05

.80

.77

28
50

.33
.13

0

. 007 n. m.

3.32

23.

91

6.13
5.96

L

-, e O

.64

. 50
. 16
.73
.09
.60

Table 1. Effect of Errors on Computed Position
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ERROR IN COMPUTED POSITION - IN NAUTICAL MILES

TT1
o

10

LER L

LEGEND

TIME OF PERIGEE
ECCENTRICITY
SEMI-MAJOR AXI1S
ARGUMENT OF PERIGEE
RIGHT ASCENSION OF ASCENDING NODE
INCLINATION

O® + xQO e

o L1141 (S S B N

0.l 1.0 © 100
RELATIVE MAGNITUDES OF INPUT ERRORS

Graph 1. Variation of Output Error with Errors in Orbital Elements
(Flight Path #2)
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0.1 degree

A right ascension of the ascending node

Ainclination 0.1 degree

The values of errors used for the parameters describing the aircraft motion
are based on magnitudes of errors likely to be experienced if an inertial navigation
system with a 1.5 n.m. /hr CEP performance figure is used to supply velocity and
heading information. A system of this quality was chosen because, recently, the
navigation systems chosen for the Boeing 747 commercial aircraft are inertial
navigation systems with this performance figure. It is unlikely that, because of
the greatly increased cost, inertial navigation systems of higher quality than this
would be chosen for commercial aircraft unless the cost of inertial navigation sys-
tems decreases significantly in the next several years; this is a definite possibility,
however, Reference 8 gives several rules of thumb for determining the velocity
and heading accuracy of an inertial navigation system when the only performance
figure given is the n. m, /hour CEP figure; this is the only performance figure the
author has obtained for the Boeing 747 system. Using these rules of thumb, the

following values of errors are those used in the simulation:

North velocity error = 3.5 mph

East velocity error = 3.5 mph
Heading error (initial) = 4.0 Mmin

The effects of north velocity error and east velocity error are considered separately.
The heading error is expressed as velocity errors, i.e. considering the heading

j to be in error and the total velocity to be correct, new values of east and north
velocity are computed based on the incorrect heading angle. The changes resulting
in the north andA east velocity values, therefore, are considered to be the errors
in velocity corresponding to the heading error. These velocity changes are then
used to determine the effect of heading error on the accuracy of the computed

position, The value used for altitude error is 1, 000 ft,

The results of the digital computer simulation are summarized in Table 1.
The numbers shown in the table are the errors in the computed position of Py in
nautical miles due to the error source on the left side of the table. The position
error in p, was chosen instead of p; because Py is the position at the end of the
six minute interval during which the Doppler measurements are taken and therefore,
is the most recent computed position. It should be pointed out again that the
position of P, is considered to be the unknown in the basic navigation equations and
that Pys Pgs and p, are determined in terms of Py and the motion of the aircraft

during the six minute interval.
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For each flight path, the program was executed once with zero error in
in the input data and using an estimated initial position that was in error by about
20 or 30 miles. This was done to check the accuracy of the program. The
maximum error in computed position with zero error input, as seen in Table 1,
is only 0.019 n.m. or about 115 ft. This error probably results from the use of
approximations, round-off errors, etc, It is felt that this magnitude of error is
completely tolerable and, thus, verifies the validity of the simulation.,

It is noted that the ma gnitude of error in the computed position differs

little with pass angle for errors in time of perigee, argument of perigee and right
ascension of ascending node.

Surprisingly, the errors in computed position due to errors in inclination

and east velocity are less for high satellite pass angle (Flight Path #3) than for
lower pass angles,

However, for high satellite pass angle, the errors in computed position
due to errors in eccentricity, semi-major axis, north velocity, heading and altitude
are much greater than for low or medium pass angles. It appears that the system is
particularly sensitive, at high pass angles, to errors affecting the altitude
determination of both the aircraft and satellite as manifested by errors in
eccentricity, semi-major axis, and aircraft altitude. For example, the error in
computed position resulting from eccentricity error jumped from around 8 n. miles
for Flight Paths #1 and 2 to nearly 24 n. miles for Flight Path #3. The error in
computed position due to aircraft altitude error at high satellite pass angle
(Flight Path 3) was over 10 times the value for Flight Paths 1 and 2.

The breakdown of position error into latitude and longitude error reveals
that, generally, the latitude and longitude errors are of the same order of magni-
tude, with some exceptions. For example, at low satellite pass angle, the posi-
tion error resulting from the error in the right ascension of the ascending node
is equal to the error in longitude; this is due to the fact that the input error '"dis-
places'" the satellite longitudinally only. It should be noted that latitude error
yields error in longitude because longitude rate is a function of latitude; thus,
input errors affecting only the latitude of the satellite position cause errors in
longitude of the aircraft, also.

To determine if the error in the computed position is related to the input
error in a linear fashion, Flight Path #2 was run for input errors 110 the magnitude
of those listed in Table 1 and again for input errors 10 times the magnitude of
those in Table 1. In other words it was desired to determine whether the output

error would increase K times if the input error was increased K times. The
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10.0
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0.1

ERROR IN COMPUTED POSITION - IN NAUTICAL MILES
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O+ xeo

LEGEND
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NORTH VELOCITY
HEADING
ALTITUDE

P 111

0}

10

RELATIVE MAGNITUDES OF INPUT ERRORS

Graph 2. Variation of Output Error with Errors in Knowledge

(Flight Path #2)
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results of these runs for Flight Path #2 are given in Table 2. The plots of these

results are shown in Graphs 1 and 2. Graph 1 contains the plots for errors only in
the orbital elements in Graph 2 shows the results for errors only in the knowledge

of the aircraft motion.

- In Table 2 and Graphs 1 and 2 it is noted that the output errors vary very
nearly linearly with the input errors. The only exceptions are for errors in the
knowledge of aircraft motion that are ~11—0 the magnitude of the nominal input errors.
It is believed this apparent non-linearity can be explained by noting the very small
magnitudes of output errors for this set of input errors. The maximum output

error for this set is 0. 05 nautical miles and when one considers that the error in

computed position with no input errors is 0.018 n.m., it is seen that there is an
uncertainty in the figure for output error of about 0.02 n.m, This means the
values of output error obtained in this set are not reliable due to the fact the
computational error is so great relative to the values computed. With these
exceptions, however, the output errors generally increase linearly with the
increase in input errors for medium satellite pass angle,

34




CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER STUDY

Results of using the Navy Navigational Satellite System for a fixed earth-
bound station, according to Reference 6, are errors in computed position averaging
0.13 nautical miles. Comparing this figure with the results shown in Table 1, it
appears that the errors in the knowledge of the orbital elements in the actual oper-
ational system are, generally, much less than the magnitudes used for the runs
whose results appear in Table 1. It would seem that, in general, no serious prob-
lem exists with the accuracy of this ( orbital element) input data for high-speed
aircraft, except that, for high satellite pass angles, errors in eccentricity and
semi-major axis become particularly troublesome.

Judging from the results obtained with errors in the knowledge of the air-
craft's motion, which are the magnitudes of errors likely to result from using a
good inertial navigation system for this information, the Navy Navigational
Satellite System could be of definite benefit in giving accurate position fixes of

supersonic aircraft, although there is some degradation at high satellite pass angles.

There are, however, some problems which may arise for high-speed aircraft
use of this system which should be mentioned. One of these difficulties is locking
onto the satellite's transmitted signal; this may be difficult in a high-speed aircraft,
particularly, if it is in maneuvers during the satellite pass. Another problem is
that, at present, there are only four satellites in orbit and this may require a wait
of up to an hour and a half to obtain a position fix; this would make this system of
little value for some flights of less than an hour or two in duration. It is, however,
entirely possible that the number of satellites may be increased; estimates are that,
if eight evenly-spaced satellites were used instead of four, the maximum wait would
be only about 15 minutes, which would make this system a very useful one for high-
speed aircraft,

No attempt has been madein this thesis to determine the benefits of using
an optimum filtering technique for combining the output of the Navy Navigational
Satellite System with the aircraft's inertial navigational system. Such a study
would help in more fully evaluating the benefits of the Navy Navigational Satellite
System for use with high-speed aircraft.
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APPENDIX

COMPUTER PROGRAM AND FORMAT
OF INPUT DATA

The format of the input data cards to the program and the description and
units of the variables will now be given.

Card 1:

TO, time satellite is at position Pl’ in seconds from 0 hr. GMT

ATP, time of perigee passage of satellite, in seconds from 0 hr. GMT

AAPP, argument of perigee, in degrees

AECC, eccentricity of orbit, set equal to 0.0

ASALT, satellite altitude at equator, in nautical miles, set equal to 600.0

ARAAN, right ascension of the ascending node, in degrees

AINCL, inclination of the orbit, in degrees, set equal to 90.0

Card 2:

BETA(1), actual geocentric latitude of aircraft at TO, in degrees

LAM(1), actual longitude of aircraft at TO measured eastward from
Greenwich, in degrees

AVE, actual east velocity of aircraft with respect to the earth, in
st. miles per hour

AVN, actual north velocity of aircraft with respect to the earth, in
st. miles per hour

AHA, actual altitude of aircraft, in ft.

TT, time at which e-frame coincides with i-frame, in seconds
from 0 hr, GMT

Card 3:

DTMP, error in time of perigee, in seconds

DECC, error in eccentricity of orbit
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DSMA, error in semi-major axis, in km.

DAQP, error in argument of perigee, in degrees

DOMN, error in rt. ascension of the ascending node, in degrees

DINC, error in orbit inclination, in degrees

Card 4:

DVE, error in knowledge of aircraft east velocity, in st. miles per hour

DVN, error in knowledge of aircraft north velocity, in st. miles per
hour

DHA, error in knowledge of aircraft altitude, in ft.

BIE, estimated value of BETA(1) at TO, in degrees

LIES, estimated value of LAM(1) at TO measured eastward from

Greenwich, in degrees

Next, an outline of the computer program is given.

Also included in this appendix is the complete computer program listing.
The language of this program is MAD,
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OUTLINE OF COMPUTER PROGRAM

Part |

/ READ, PRINT
Input card no, |

Y
Compute Actual
Satellite Positions

P P2, P3, P‘1

v
READ, PRINT
Input card no. 2
v

Compute Actual
Aircraft Positions

B Py P30 Py

v
Compute Doppler Counts

N2 Ny N

Part 2

READ, PRINT
Input card no.3
v
Compute Satellite
Positions: Pl' P2 . P3, P‘1
with possible errors in
orbital elements

Part 3 l

READ, PRINT
Input card no, 4

v

Compute Aircraft
Positions p| , DZ, D3. 94
based on estimate of P,
and with possible errors
in velocity, heading, or
altitude.

Partd o
Compute solution of

Basic Navigation Equations
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DIMENSION THETA(5)sR(5)+sPHI(5)sBETA(5)sLAM(S5)sDT(5)
1ALAMIS5) s ATLG(S ) sALAT(5) oD(5)9sNC(5)9sTA(5)sCSR{S5}YsCSTHT(5)»
2CSPH{5) +CBETA(5) yCLAM(5) s CRHO(5)

DIMENSION DB(5)sDL(5)sDR(5) sDXC(5)+DLDBI(S)DDDB(S5)+DDODL(5)
IRLAT(S5)sRLAM(5) 9FBETA(S) s FLAM(S)sELAT(S) 9ELAM(5)»
2TOTERR(5) 9y RHO(5) 4DCT(5)

DIMENSION PRB(5),PBB(5)sPLB(S)

INTEGER 1eJsK

R*A

GME=1e407639E16

KMTFT=3281,

FTKM=243048E~3

MPHTFS=14467

DTR=e17453293E-1

RTD=5T7.29578

REP=6358,912

REE=6378,388

MPHKH=14609

NMTFT=6080,

WIE=T o 29E=5%

Cx3437267E=3

CL=299793,0

SMARREE#KMTFT+ASALTENMTFT

A3sSMA P43

M2M=GME/ A3

AMM=SQRT ¢ ( M2M}

IANG=ARAAN#D TR

THETA(1)=IANG

THETA( 2)= I ANG

THETA(3)=TANG

THETA(4)=TANG

IDTN=SMA®F TKM
R(1)=IDTN
R(2)sIDTN
R(3)=IDTN

R(4)=IDTN

EA=AAOP*DTR

PHI(1)=AMM®({ TO-ATP)+EA
PHI(2)=AMM®{ TO+120.-ATP)+EA

PHI(3)=AMM2(T0+240,~-ATP)+EA

PHI(4)=AMM®(TO+360,-ATP)+EA

R'A

KKK=1l e~ (REP/REE)#* {REP/REE)

K1=KKK/ 4o

K22 ({3 4 #KKKEKKK)/ 32,

AVE=AVERMPHTFS

AVN=AVNEMPHTFS

BNUM=AVN®#F TKM

LNUM=AVE®F TKM

K=0
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AAA

STl

8BB

ST2

ccc

573
00D

BETA(1)=BETA(1)#DTR

LAM(1)=LAM{1)*DTR

8=BETA(1)

LeLAM(1)

T'H STly FOR [=0s 19 1eGE.120
BDONM=ERADe ( B)+AHA %#F TKM
LDNM=BDNM#CO0S. (B)

L=L+(LNUM/LDNM)

B=B+(BNUM/BDNM)

K=K+1

W'R KeEe120

BETA(2)=8

LAM{2)sL

TIO AAA

O'R KeEes 240

BETA(3)=8

LAM(3)=(

TIO AAA

Ot'E

BETA(4) =B

LAM(4) =L

EtL

TVH ST2s FOR J=1y 1o JeGESS

RB=BETA( J)

RDS=ERAC s+ ( RB)+AHA®F TKM
IFEFaWIER(TO4+(J=1,)%#120,-TT)
LIF=LAM(J)+IFEF

SP=PHI(J)

SR=R( J}

AB=BETA(J)

LO=THETA(J)=~LIF
COTo(SIN(SPIRSING(AB) )+ (COS(SPI®RCOS4(ABY®COS(LDY)
DSK={SR=RDS) #( SR=RDS)+2+#S5R*(1,-CGTY*RDS
DT(J)=SQRT 4 (DSK)/CL

ALAM(J) s AM(J)+(AVE®DT(J)#FTKM) /(RDS*COS. (AB) )
AILG(J)=ALAM(J)+IFEF+WIE®DT (V)
ALAT(J)=sBFTA{J)+( AVN®EDT(J)®FTKM)/RDS
ALA=ALAT(J)}

LK=THETA(J)=-AILG(J)

CGTuSINe (SP)#SINe (ALA)+C0Se (SPI®COS, (ALA)Y#COSe (LK)
ADSK=(SR~RDS)#(SR=RDS)+2,%SR*(1¢~CGT)*RDS
RHO( J) =RDS

D(J)=SQRT. {ADSK)

PtS RIJYsPHI(J)Ys THETA(J) sRHO(J) s ALAT(J)
PrS ATLG(J)sALAM( J) DT (J)sD( J)
FG=400,01E4+6

FT=440E+8

OF=140E+4

T*H ST3s FOR J=1y 1y JeGEW 4

NC(J)=DF #1204+ (FG/CLI#(D(J+1)=D(U))

P*S NC(J}

R*A

TP=ATP+DTMP

ECC=AECC+DECC

SMJIA=SMA4+DSMA®KMTFT
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EEE

ST4

AOP={ AAOP+DAOP ) #DTR
RAAN={ ARAAN+DOMN) #DTR
INC={ AINCL=DINC)#DTR
A3=SMJUAPe3

M2M=GME/ A3

MM=SQRT, (M2M)
El=24#ECC-((ECCePo3)/bs)
E22( 5 #ECCRECC) /4o
E33(13e#(ECCePe3))/124
E4=SMJARFTKM®(1e~ECCeP42)
CMG=COS,e (RAAN)

SMG=SINe (RAAN)
CW=CO0Se(AOP)

SW=S5IN( AOP)

CI=COS{ INC)

SIsSING { INCY
L1=CMG*CW~SMG*SW#C]
L2==~(CMG#SW) ~{ SMG*CW*C1)
M13SMGH*CW+CMG*SWH*C1

M2~ ( SMG*SW) +CMG*CW*CI
N1=SW#51

N2=CW#%5]

T'H ST4y FOR J=1s 1y JeGEe5
MAM=MM#%( TO+(J-1,)%#1204~TP)
M2AM= 24 #MAM

M3AM= 3 ¢ #MAM

TA(J) =MAM+E1%#SIN, (MAM)+E2%STINo (M2AM)+E3%#SINe (M3AM)
TAN=TA( D)
RORB=E4/ (14 +ECCHCOSL(TAN))
XPSI=RORB*COSs (TAN)
XETA=RORB#SINe (TAN)
XI=L1%XPSTI+L2%XETA
YI=M1#XPST+M2#XETA
ZI=aN1®XPST4N2#XETA
RPSK=sXI#XT4+YI*Y]
RPL=SQRT ¢ {RPSK)
CSR(J)=FORB

IR=Y1 /X1
CSTHT(J)=ATANe (IR}
IR=Z1/RPL

CSPH( J)=ATANG{ IR)

P1S TA(J)sCSRIJ) s CSTHT(J) »CSPH(J)
RYA

VE=AVE+DVE ¥MPHTF S
VN=AVN+DVN#MPHTF S
HA=AHA+DHA

BIE=BIE#DTR

LIES=LIES*DTR
CBETA(1)=PIE

CLAM( 1)=LIES

B=BIE

L=LIES

BNUM=VN#F TKM

LNUM=VE#FTKM

K=0
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FFF T'H ST59 FOR I=0y 1y I1.GE+120
BONM=ERAD+ (B)+HA®FTKM
LDNM=BDNM*COS+ (B)

L=L+(LNUM/LDNM)
B=B+{BNUM/BDNM)

STS K=K+1
W'R KeEel20
CBETA(2)=8
CLAM( 2) =L
T'0O FFF
O'R KeEo 240
CBETA(3)=8
CLAM(3) s
T'0O FFF
O'E
CBETA(4)=B
CLAM( &)=
E'L

GGG TY'H ST6s FOR J=ly 1y JeGEeS
AGCBT=CBETA(J)
BDNM=ERADs (AGCBT ) +HA®FTKM
LDNM=BDNM#*#COSe (AGCBT)

IP=CSPH( J)

1T=CSTHT(J)

IVL=CLAM{J)I4+WIER (TO+(J=14)%1206-TT)

IRK=]1T=-1VL
CGT=SING(IP)RSING (AGCBT)I+COS«( IP)#COSe (AGCBT)#COSe ( IRK)
IVRs(CSR(J)~BDNM) #(CSR(J) -BDNM) +2#CSR(J)# (1+~CGT) #BDNM#»
DCT(J)=SQRTL(IVR) /CL

BADD=(VNEDCT(J)®FTKM) /BDNM

CBETA(J)=CBETA(J)+BADD

CLAM{ J)=sCLAM(J)+(VE®DCT(JI®#FTKM) /LDNM

CRHO(J) =BDNM

ST6 P*S CRHO(J)sCBETA(J)»sCLAM(J)yDCT( D)
DB(1)=0,

DB(2)=CBETA(2)-CBETA(1)
DB(3)=CBETA(3)-CBETA(])
DB(4)=CBETA(4)-CBETA(1)
DL(1)=0,
DL(2)=CLAM(2)~CLAM(1)
DL(3)=CLAM(3)=CLAM(1)
DL(4)=CLAM{&4)~CLAMI(1)
DR(1)=0,
DR(2)=CRHO(2)=CRHOI(1)

DR({ 3)=CRHO(3)~CRHO( 1)
DR{4)=CRHO (4 )=CRHO(1)

P?S DB(1)sDB(2)sDBI3)eDB(4)sDL(1)sDLL2)sDL(3)9DL{&)sDRI(1)
1 DR(2)+DR(3)sDR( &) '
RBD=2,#CBETA(1)
K1C=1,+C0Se(RBD)
SB=SIN.{RBD)
11081+ (3 #KKK*K1C) /4o
DRDB=~(REP#KKK#*SB#*#11ID) /2,

HHH T'H STT7e FOR J=1s 19 JeGESS
IP=CSPH( J)
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ST7

I18=CBETA(J)

IT=sCSTHT(J)

ILI=CLAMCJ)+WIER (TO4(J=1,)%120,+DCT(JH)-TT)
LK=IT-1IL1
COToSING(IP)IRSING (IB)4+COS ( IP)*#C0OSe(1B)#COSe (LK)
DCSSs(CSR(J)=CRHO(J)IR{CSR(J)=CRHO(J))
DCST=2,#CSRIJ) #(14-CGT)#CRHO(J)

DCSeDCSS+DCST

DXC(JI=nSQRTL(DCS)

DELTM= ( J=1,)#120,

A2B=2+%1B

SA2B=SINe( A2B)

CA28=C0Se( A28)

CBTT=)l o+ (3 #KKK#(1s+CA2B) ) /4,

AB1=CBETA(1)

RTTSERADe ( ABL)+ERAD(IB)Y 42 ¢ #HA#FTKM

NMT=]lo={ {2, #F TKME¥VNRDELTM) /RTT)*(DRDB/RTT)

DMT1= { (REP#KKK*SA2B8) /RTTI*( (VNRFTKM®DELTM*CBYTI/RTT)
NTM=REP#KKK®SA2B# CBTT#NMT
PRB{J)n={ 4S#NTM) /{1,,-DMT])

SCTM=( (2, #VN#FTKMRDELTM) /RTT)*( (DRDB+PRB(J))/RTT)
PBB(J)=]1e~SCTM

ABL=CBETA(114DBl(J)/ 2.

CABL=COS.{ ABL)

SABL=SINe( ABL)

TRMA® ({ VE#FTKM#DELTM)/(RTT*CABL)Y ) # ((SABL#(1.+PBB(J}) )} /CABL)
TRMB=( (2, #VE#FTKM®*DELTM) /RTTI®( (DRDB+PRB(J))/Z(RTT#CABLY))
PLB(J)=TRMA-TRMB

PNsSERAD. ( I1B) +HARF TKM
BXT1l=—(CGTHCSR(JY=PNI®PRB(J)
BXIAZ{SING{IP)I®COSe(IB)=COSe(IP)®SING(1B)I®COSL (LK) )#PBB(J)
BXIB=COSa (IP)IRCOSL{ IB)*#SIN (LKY®PLB(J) '
TMA=BXT1/0XC(J)

TMB=( PN/DYC(J) ) ®#BXIA®RCSR(J)

TMC=( PN/DXC(J) ) ®*BXIB®*CSR( J)

DDDB( J)sTMA=TMB-TMC
LLIT=COS(IP)I®COS,(IB)I®#SIN, (LK)

DODL( J)=~(CSR(J)/DXC(J) ) %LLIT*CRHO(J)
OFDB=-DDDB(1)+2.#DDDB(2)-DDDB(3)
DGDB=-DDDE(2)+2.#DDDB( 3)~-DODB( 4)
DFDL=-DDDL(1)+2.#DDDL(2)~-DDDOL (3)
DGDL=-DDDL(2)+2.#DDDL{3)-DODL (4)
Fa=DXC{1)4+2#DXC(2)-DXC(3)+(CL/FG)I*#(NC(2)-NC(1))
Gx=DXC{2)42#DXC(3)=DXC(4)+(CL/FG)#(NC(3)=NC(2))
CRON=DFDB#DGDL-DF DL*DGDB
DELBT=(G#DFDL ) /CRON-(F»DGDL ) /CRDN

DELLM=(F#DGDB) /CRDN~(G*DFDB) /CRDN

P*'S DELBT+DELLMyF +G9DFDByDGDLsDFDL »DGDB
CBETA(1)=CBETA(1)+DELBT

CLAM{ 1)=CLAM(1)+DELLM

RB=CBETA(1)

BDNM=ERAD, (RB) +HA#F TKM

LONM=BDNM&COSe (RB}

BSUB=(VN®DCT(1)#F TKM) /BDNM
CBETA(1)=sCBETA(1)~BSUB
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CLAM({1)=CLAM(1)~(VE®DCT(1)#FTKM)/LDNM
B=CBETA(1}Y
L=CLAM(]1)
K=0
W'R oABS(DELBT)eGEs 1,0E-69 T'0O FFF
EPS=140E-6/C0Se(B)
W'R oABSe(DELLM)¢GELEPSy T*O FFF
JJJ T'H ST8s FOR 1=0s 1y l6GEel20
BONM=ERADe { B)+HAXFTKM
LDNM=BDNM%#COSe (B)
Lel+(LNUM/LDNM)
B=B+( BNUM/BDNM)
ST8 K=K+l
WIR KeEW120
CBETA(2)=B
CLAM(2) =L
TO JJJ
O'R KeEe240
CBETA(3)=B
CLAM(3) =t
TO JJJ
OtE
CBETA(4)=B
CLAM( 4 ) =L
E'L
LLL T'H ST9y FOR J=ly 1y JeGESS
RBB=CBETA(J)
BONM=ERAD. (RBB)+HA®F TKM
LONM=BDNM#C0Se (RBB)
CBETA(J)=CBETA(J)+(VN%DCT(J)#FTKM) /BDNM
CLAM(J)=CLAM(J)+(VE®DCT(J)*FTKM) /LDNM
FBETA(J)=CBETA(J)®#RTD
FLAM(J)=CLAM(J)®*RTD
RLAT(J)=ALAT(J)®RTD
RLAM(J)Y=ALAM(J)*RTD
ST9 P*S FBETA(J)sFLAM(J)sRLAT(J)sRLAM( )
MMM T'H SST1ls FOR J=ly 19 JeGEWS
BKI=ALAT(J)
BDNM=ERAD« (BKI ) +AHARF TKM
ELAT(J)=((CBETA(J)=ALAT(J) ) *BDONM®KMTFT)/6080.
ELAM{J) ={ (CLAM({J)=ALAM(J) ) *BDNM#COS, (BKI)®#KMTFT)/76080,
P'S ELAT(J)+ELAM( J)
XX2=ELAM( JIRELAM( J)+ELAT(J)*ELAT(J)
TOTERR( J)=SQRT« (XX2)
SST1 P*S TOTERR(J)
T'0 DDD
INTERNAL FUNCTION (X)
ENTRY TO ERADs
AUX=2 ¢ %X
K1C=1l,a+CO0Se( AUX)
K2C=K1C#K1C
FUNCTION RETURN REP#(1,+({K1C#K1)+(K2#K2C))
END OF FUNCTION
END OF PROGRAM
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